Maximos y Minimos relativos
Página 1 de 1.
Maximos y Minimos relativos
Los máximos y mínimos son los extremos relativos o locales de una función.
Extremos relativos o locales
Si f es derivable en a, a es un extremo relativo o local si:
1. Si f'(a) = 0.
2. Si f''(a) ≠ 0.
Máximos relativos o locales
Si f y f' son derivables en a, a es un máximo relativo si se cumple:
1. f'(a) = 0
2. f''(a) < 0
Mínimos relativos o locales
Si f y f' son derivables en a, a es un mínimo relativo si se cumple:
1. f'(a) = 0
2. f''(a) > 0
Cálculo de máximos y mínimos
1. Hallamos la derivada primera y calculamos sus raíces.
2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella las raíces de derivada primera y si:
f''(a) < 0 es un máximo relativo
f''(a) > 0 es un mínimo relativo
3. Calculamos la imagen (en la función) de los extremos relativos.
Ejemplo
f(x) = x3 − 3x + 2
f'(x) = 3x2 − 3 = 0
f''(x) = 6x
f''(−1) = −6 Máximo
f''(1) = 6 Mínimo
f(−1) = (−1)3 − 3(−1) + 2 = 4
f(1) = (1)3 − 3(1) + 2 = 0
Máximo(−1, 4) Mínimo(−1, 0)
Extremos relativos o locales
Si f es derivable en a, a es un extremo relativo o local si:
1. Si f'(a) = 0.
2. Si f''(a) ≠ 0.
Máximos relativos o locales
Si f y f' son derivables en a, a es un máximo relativo si se cumple:
1. f'(a) = 0
2. f''(a) < 0
Mínimos relativos o locales
Si f y f' son derivables en a, a es un mínimo relativo si se cumple:
1. f'(a) = 0
2. f''(a) > 0
Cálculo de máximos y mínimos
1. Hallamos la derivada primera y calculamos sus raíces.
2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella las raíces de derivada primera y si:
f''(a) < 0 es un máximo relativo
f''(a) > 0 es un mínimo relativo
3. Calculamos la imagen (en la función) de los extremos relativos.
Ejemplo
f(x) = x3 − 3x + 2
f'(x) = 3x2 − 3 = 0
f''(x) = 6x
f''(−1) = −6 Máximo
f''(1) = 6 Mínimo
f(−1) = (−1)3 − 3(−1) + 2 = 4
f(1) = (1)3 − 3(1) + 2 = 0
Máximo(−1, 4) Mínimo(−1, 0)
Página 1 de 1.
Permisos de este foro:
No puedes responder a temas en este foro.